
Ada Europe 2014

Andrew Coombes, Roger Braff, (Rockwell Collins) Jack Whitham, Antoine Colin

acoombes@rapitasystems.com

Modified Condition/Decision

Coverage (MC/DC) of Ada Case

Statements

Context

case x is

 when 1 => do_alpha;

 when 2|3 => do_beta;

 when 5..6 => do_gamma;

end case;

Context: Why structural coverage?

Requirement

s

Tests Coverage

Checks:

• Does every requirement have a test? [traceability]

• Is every test associated with a requirement? [traceability]

• Do the tests exercise all of the source code? [coverage]

• No – code is unnecessary

• No – requirements are missing

• No – tests are not detailed enough

Source code

Introduction to MC/DC

Structural code coverage technique

MC/DC = Modified Decision/Condition Coverage
 What's a condition?

 A Boolean expression containing no Boolean operators

 For example:

 (a > 17)

 Weight_on_wheels

 What's a decision?

 Boolean expression composed of conditions and zero or more Boolean

operators.

 For example:

 if (a > 17) and not Weight_on_wheels then …

 Decision includes:

 Branch points

 Boolean operations that appear on assignment statements

 Actual parameters

 Etc.

Introduction to MC/DC

Defined in DO-178B as:
 Every point of entry and exit in the program has been invoked at least once,

 every condition in a decision in the program has taken all possible outcomes at least

once,

 every decision in the program has taken all possible outcomes at least once,

 and each condition in a decision has been shown to independently affect that

decision's outcome.

 A condition is shown to independently affect a decision's outcome by varying just

that condition while holding fixed all other possible conditions.

begin

 if d < 24 or d > 26 or m <> 6 or y <> 14 then

 isAdaEurope := False;

 elsif place = Paris then

 isAdaEurope := True;

 else

 isAdaEurope := False;

 end if;

end;

False True False False False True True True

Why when is a decision?

Are the when statements decisions?

Why?

No:

 Case labels aren't boolean expressions.

Therefore, can't be decisions

Yes:

 If statements are morphologically equivalent

to case statements

 If not, it allows a "back-door" to avoid MC/DC

testing obligations

case x is

 when 1 => … ;

 when 2 => … ;

 when others => …;

end case;

if x = 1 then

 …;

elsif x = 2 then

 …;

else

 …;

end if

If when isn't a decision

When statements
Test cases (4)

100% statement coverage

If when isn't a decision

if statements Test cases (7)

100% MC/DC

How when is handled as a decision

Each when statement is a

separate decision

A single value is a simple

comparison

 x = 1

A choice is a disjunction between

conditions

 x = 2 or x = 3

A range has a number of possible

implementations…

case x is

 when 1 => do_alpha;

 when 2|3 => do_beta;

 when 5..6 => do_gamma;

end case;

How when is handled as a decision

Implementing ranges

case x is

 when 12..18 => ...

Option 1: use "in"

if x in 12..18 then ...

 Requires 2 tests: x not in range, x in range

 Might not be acceptable to certifying authorities

Option 2: use pairs of tests

if x >= 12 and x <= 18 then ...

 Requires 3 tests: x < 12, 12 >= x >= 18, x > 18

 Problematic in some situations…

Option 3: use individual tests

if x = 12 or x = 13 or ... or x = 18 then

...

 Requires 8 tests: x = 12, x = 13, … x = 18, x = 1

 Number of tests scales with the size of the range

When when causes a problem

Implementing MC/DC checks on ranges using pairs of tests

Problem 1:
 One of the tests is at the limit of the type size

x : natural;

case x is

 when 0..5 => ... - can't create a test case where x < 0

Problem 2:
 Contiguous ranges of numbers

case x is

 when 0..12 => ...

 when 13..17 => ...

 Equivalent to:

if x >= 0 and x <= 12 then ...

elsif x >= 13 and x <= 17 then ...

 Can't create a test case in the elsif branch where x >= 13 is false

 This condition is dead code

Summary

Consensus seems to be "when" is a decision

Implications for code coverage tool vendors…

Current status at Rapita
 Working implementation of when coverage within RapiCover

 In a development branch of the tool

 Will be released at the next RVS release

Thank-you for your attention

For further details:

 acoombes@rapitasystems.com

